

REFERENCE:

RN001

Flow divider with independent phase correction and anticavitation valves for each element with MOTOR

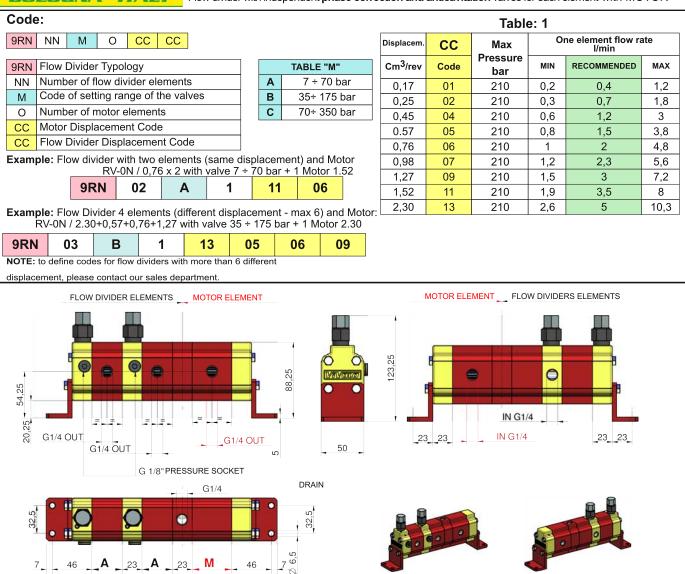


Table: 2

Li = Distance between fixing hole centres (single displacement flow divider) **Number of elements** Cm³/rev A-M 174,8 227,7 280,6 333,5 386,4 492,5 545,1 650,9 703,8 756,7 809,6 862,5 915,4 0.17 29.3 439,3 0,25 29,9 232,5 341,5 450,5 559,5 668,5 777,5 886,5 0,45 31,5 235,5 346,5 457,5 568,5 679,5 790,5 901,5 0,76 0,98 35,5 244,5 361,5 478,5 595,5 712,5 829,5 946,5 1,27 1.52 2,30

Table: 3 in this table the number of inlets in function of the number of elements are indicated.

Lt

Number of elements	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
"IN" Number of inlets	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8

Flow divider with independent phase correction and anticavitation valves for each element with MOTOR

EXTERNAL DRAIN STANDARD SETUP	INTERNAL DRAIN
For the correct functioning of the flow divider, it has to be installed <i>under the oil level</i> . The drain tube has to pick up under the oil level and it has not to aspire air.	To predispose the divider to the internal drain, plug the 1/4 G drain port (T) Note : with this configuration the function of anticavitation valves is annulled
OUT 1 OUT 2 OUT	OUT 1 OUT 2 OUT
oil	

In **table 1** the functining range of single flow divider elements is indicated.

The higher is the feeding capacity (q), the higher is the precision of the flow division, but in opposition there are losses of loading and higher noise. Therefore we suggest to feed the elements with capacities equal or a few superior to the ones indicated in the column **"RECOMMENDED"**.

Remember to verify the capacities even in phase of flow reunion.

The pressure indicated are to be considered as maximum of functioning, the flow divider is able to bear peaks of pressure 20 % superior.

How to calculate the "Li" and "Lt" measures of flow dividers:

From **table 2** it is possible to obtain the "Li" measure for flow dividers up to 16 elements with equal displacements; for flow dividers with different elements or with more than 16 elements the "Li" and "Lt" measure have to be calculated by the following formula:

Li =
$$[(n-1) \times 23] + 92 + (A1 + A2 + A3 +)$$
 92 = 46 + 46

n = Number of elements of flow divider

A1... An = heights of elements of flow divider

 $\textbf{EXAMPLE:} \ \ \text{To obtain the measures Li and Lt of a flow divider with three elements (n=3), RV-NG \ / \ 0,98 \ x \ 2+1 \ MOTOR \ 2,30 \ \ / \ 0,98 \ \ / \ 0,98 \ \ / \ 0,98 \ \ / \ 0,98 \ \ / \ 0,98 \ \ / \ 0,98 \ \$

Distance between fixing hole centres $Li = [(3-1) \times 23] + 92 + 35,5 + 35,5 + 46 = 255 \text{ mm}$

In table 3 the number of inlets in fuction of the number of elements are indicated.

For flow dividers with many inlets, as they are all communicating it is even possible to use only one of them, by plugging the other ones. We suggest to make full us at least of 1 inlet every 15 l/min capacity.

To obtain errors of division **inferior to 3%** there must be no difference of pressure between the elements superior to **30 bar.** To obtain high precisions the respect of the following parametres is also important:

- Environment temperature: -10°c ÷ +60°c Oil temperature: +30°c ÷ +60°c

- Hydraulic oil based on hlp, hv (din 51524) minerals Oil Viscosity 20 ÷ 40 cSt

- Oil filtering 10 ÷ 25 μ

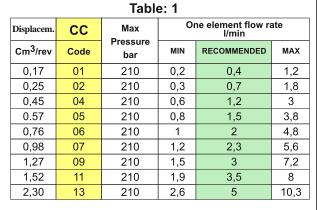
Flow divider (Standard Version)

Code:

9RD NN CC

9RD	Flow Divider Typology
NN	Number of elements
CC	Displacement Code

Example: Flow divider with two elements (same displacement):


9RD 02 05

Example: Flow Divider with 4 elements (with different displacement - max 7):

PRD 04 05 06 07 11

NOTE: to define codes for flow dividers with more than 7 different

displacement, please contact our sales department.

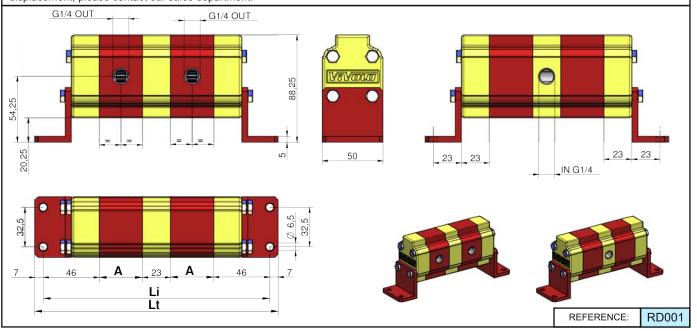


Table: 2

Li = Distance between fixing hole centres (single displacement flow divider)

		_									, ,					,
Cm ³ /giro	۸		Number of elements													
om /gno	A	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0,17	29,3	174,8	227,7	280,6	333,5	386,4	439,3	492,5	545,1	598	650,9	703,8	756,7	809,6	862,5	915,4
0,25	29,9	178	232,5	287	341,5	396	450,5	505	559,5	614	668,5	723	777,5	832	886,5	941
0,45	31,5	180	235,5	291	346,5	402	457,5	513	568,5	624	679,5	735	790,5	846	901,5	957
0,76	34	183	240	297	354	411	468	525	582	639	696	753	810	867	924	981
0,98	35,5	186	244,5	303	361,5	420	478,5	537	595,5	654	712,5	771	829,5	888	946,5	1005
1,27	38	191	252	313	374	435	496	557	618	679	740	801	862	923	984	1045
1,52	40	195	258	321	384	447	510	573	636	699	762	825	888	951	1014	1077
2,30	46	207	276	345	414	483	552	621	690	759	828	897	966	1035	1104	1173

Table: 3 in this table the number of inlets in function of the number of elements are indicated.

Number of elements	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
"IN" Number of inlets	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8

Flow divider (Standard Version)

INTERNAL DRAIN OUT

In **table 1** the functioning range of single flow divider elements is indicated.

The higher is the feeding capacity (q), the higher is the precision of flow division, but in opposition there are losses of loading and higher noise. Therefore we suggest to feed the elements with capacities equal or a few superior to the ones indicated in the column "RECOMMENDED".

Remember to verify the capacities even in phase of flow reunion.

The pressures indicated are to be considered as maximum of functioning, the flow divider is able to bear peaks of pressure 20% superior.

How to calculate the "Li" and "Lt" measures of flow dividers:

From table 2 it is possible to obtain the "Li" measure for flow dividers up to 16 elements with equal displacements; for flow dividers with different elements or with more than 16 elements the "Li" and "Lt" measure have to be calculated by the following formula:

Li =
$$[(n-1) \times 23] + 92 + (A1 + A2 + A3 +)$$
 92 = 46 + 46

n = Number of elements of flow divider

A1... An = heights of elements of flow divider

EXAMPLE: To obtain the measures Li and Lt of a flow divider with three elements (n=3), RV-0D 0,98 + 0,76 +1,27

Distance between fixing hole centres $Li = [(3-1) \times 23] + 92 + 35,5 + 34 + 38 = 245,5 \text{ mm}$

Total Lenght Lt = 245,5 + 14 = 259,5

In table 3 the number of inlets in fuction of the number of elements are indicated.

For flow dividers with many inlets, as they are all communicating it is even possible to use only one of them, by plugging the other ones. We suggest to make full us at least of 1 inlet every 15 l/min capacity.

To obtain errors of division inferior to 3% there must be no difference of pressure between the elements superior to 30 bar. To obtain high precisions the respect of the following parametres is also important:

Enviroment temperature: -10°c ÷ +60°c Oil temperature: +30°c ÷ +60°c

Hydraulic oil based on hlp, hv (din 51524) minerals Oil Viscosity 20 ÷ 40 cSt

Oil filtering 10 ÷ 25 µ

RV-0S

Flow divider with single phase correction valve common to all the elements

Code:

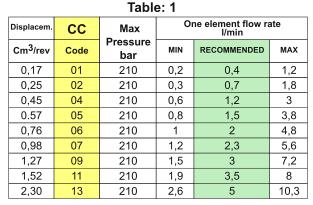
9RS NN M CC

9RD Flow Divider Typology
NN Number of elements
M Code of setting range of the valves
CC Displacement Code

TABLE "M"

D 20 ÷ 140 bar

E 70÷ 315 bar


Example: Flow divider with two elements (same displacement) RV-0D / 0.57×2 with valve $20 \div 140$ bar

9RS 02 D 05

Example: Flow Divider with 4 elements (with different displacement - max 7): RV-0S / 0,57+0,76+0,98+1,52 with valve 70 ÷ 315 bar

9RS 04 E 05 06 07 11

NOTE: to define codes for flow dividers with more than 7 different displacement, please contact our sales department.

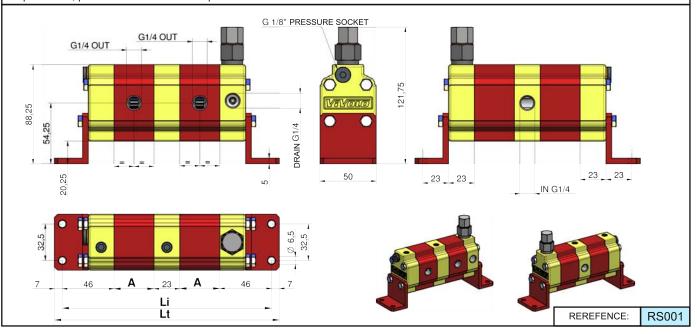


Table: 2

Li = Distance between fixing hole centres (single displacement flow divider)

Cm ³ /rev	A
0,17	29,3
0,25	29,9
0,45	31,5
0,76	34
0,98	35,5
1,27	38
1,52	40
2,30	46

									, ,	•				,	
	Number of elements														
2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
174,8	227,7	280,6	333,5	386,4	439,3	492,5	545,1	598	650,9	703,8	756,7	809,6	862,5	915,4	
178	232,5	287	341,5	396	450,5	505	559,5	614	668,5	723	777,5	832	886,5	941	
180	235,5	291	346,5	402	457,5	513	568,5	624	679,5	735	790,5	846	901,5	957	
183	240	297	354	411	468	525	582	639	696	753	810	867	924	981	
186	244,5	303	361,5	420	478,5	537	595,5	654	712,5	771	829,5	888	946,5	1005	
191	252	313	374	435	496	557	618	679	740	801	862	923	984	1045	
195	258	321	384	447	510	573	636	699	762	825	888	951	1014	1077	
207	276	345	414	483	552	621	690	759	828	897	966	1035	1104	1173	

Table: 3 in this table the number of inlets in function of the number of elements are indicated.

Number of elements	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
"IN" Number of inlets	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8

DENA - ITALY Flow divider with **single phase correction valve** common to all the elements

EXTERNAL DRAIN STANDARD SETUP	INTERNAL DRAIN
Connect the drain port (T) to the tank	To predispose the divider to the internal drain, execute following operations: 1. remove the M6 dowel inside the drain port 2. with a 1/4 G plug, plug the drain port (T)
OUT OUT T	OUT OUT T
oil	2

In table 1 the functining range of single flow divider elements is indicated.

The higher is the feeding capacity (q), the higher is the precision of the flow division, but in opposition there are losses of loading and higher noise. Therefore we suggest to feed the elements with capacities equal or a few superior to the ones indicated in the column "RECOMMENDED".

Remember to verify the capacities even in phase of flow reunion.

The pressure indicated are to be considered as maximum of functioning, the flow divider is able to bear peaks of pressure 20 % superior.

How to calculate the "Li" and "Lt" measures of flow dividers:

From table 2 it is possible to obtain the "Li" measure for flow dividers up to 16 elements with equal displacements; for flow dividers with different elements or with more than 16 elements the "Li" and "Lt" measure have to be calculated by the following formula:

Li =
$$[(n-1) \times 23] + 92 + (A1 + A2 + A3 +)$$
 92 = 46 + 46

n = Number of elements of flow divider

A1... An = heights of elements of flow divider

EXAMPLE: To obtain the measures Li and Lt of a flow divider with three elements (n=3), RV-0S 0,98 + 0,76 +1,27

 $Li = [(3-1) \times 23] + 92 + 35,5 + 34 + 38 = 245,5 \text{ mm}$ Distance between fixing hole centres

Lt = 245,5 + 14 = 259,5 **Total Lenght**

In table 3 the number of inlets in fuction of the number of elements are indicated.

For flow dividers with many inlets, as they are all communicating it is even possible to use only one of them, by plugging the other ones. We suggest to make full us at least of 1 inlet every 15 l/min capacity.

To obtain errors of division inferior to 3% there must be no difference of pressure between the elements superior to 30 bar. To obtain high precisions the respect of the following parametres is also important:

Enviroment temperature: -10°c ÷ +60°c Oil temperature: +30°c ÷ +60°c

Hydraulic oil based on hlp, hv (din 51524) minerals Oil Viscosity 20 ÷ 40 cSt

Oil filtering 10 ÷ 25 µ

DIVISORE DI FLUSSO Serie "RV" linea Rondine

RV-0V

Divisore di Flusso con valvole di rifasamento e anticavitazione indipendenti per ogni singolo elemento

Codice:

9RV NN M CC

9RV	Tipo Divisore
NN	Numero di Elementi
М	Codice campo taratura valvola
CC	Codice della cilindrata degli elementi

	TABELLA "M"								
A 7÷ 70 bar									
B 35÷ 175 bar C 70÷ 350 bar									

Esempio: Divisore a 2 elementi con cilindrate uguali: RV-0V / 0,57 x 2 CON VALVOLA 7 ÷ 70 bar

9RV 02 A 05

Esempio: Divisore a 4 elementi con cilindrate diverse (max 7):

RV-0V / 0,57+0,76+0,98+1,52 CON VALVOLA 35 ÷ 175 bar

9RV 04 B 05 06 07 1

NOTA: per codificare divisori con cilindrate diverse a più di 7 elementi occorre interpellare il Ns. ufficio vendite.

		Tabe	lla: 1		
Cilindrata	СС	Pressione	rtata di un eleme l/min	nto	
Cm ³ /giro	Codice	max bar	MIN	CONSIGLIATA	MAX
0,17	01	210	0,2	0,4	1,2
0,25	02	210	0,3	0,7	1,8
0,45	04	210	0,6	1,2	3
0.57	05	210	0,8	1,5	3,8
0,76	06	210	1	2	4,8
0,98	07	210	1,2	2,3	5,6
1,27	09	210	1,5	3	7,2
1,52	11	210	1,9	3,5	8
2.30	13	210	2.6	5	10.3

G 1/8" PRESA PRESSIONE

G 1/4 OUT

G 1/4 OUT

G 1/4 OUT

G 1/4 OUT

G 1/4 DRENAGGIO

RIFERIMENTO: RV001

Tabella: 2

Li = Interasse fori di fissaggio (divisore con cilindrate uguali)

Cm ³ /giro	^		Numero di elementi														
7g	A	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
0,17	29,3	174,8	227,7	280,6	333,5	386,4	439,3	492,5	545,1	598	650,9	703,8	756,7	809,6	862,5	915,4	
0,25	29,9	178	232,5	287	341,5	396	450,5	505	559,5	614	668,5	723	777,5	832	886,5	941	
0,45	31,5	180	235,5	291	346,5	402	457,5	513	568,5	624	679,5	735	790,5	846	901,5	957	
0,76	34	183	240	297	354	411	468	525	582	639	696	753	810	867	924	981	
0,98	35,5	186	244,5	303	361,5	420	478,5	537	595,5	654	712,5	771	829,5	888	946,5	1005	
1,27	38	191	252	313	374	435	496	557	618	679	740	801	862	923	984	1045	
1,52	40	195	258	321	384	447	510	573	636	699	762	825	888	951	1014	1077	
2,30	46	207	276	345	414	483	552	621	690	759	828	897	966	1035	1104	1173	

Tabella: 3 In questa tabella sono indicati il numero di ingressi del divisore in funzione del numero di elementi

Numero di elementi	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Numero di ingressi	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8

DIVISORE DI FLUSSO Serie "RV" linea Rondine

Divisore di Flusso con valvole di *rifasamento e anticavitazione* indipendenti per ogni singolo elemento

DRENAGGIO ESTERNO PREDISPOSIZIONE STANDARD DI FABBRICA Per il corretto funzionamento il divisore, va installato sottobattente. Il tubo di drenaggio deve pescare al di sotto del livello dell'olio e non deve aspirare aria. Per predisporre il divisore al drenaggio interno tappare il foro di drenaggio (T) da 1/4 G Nota: con questa configurazione la funzione delle valvole anticavitazione viene annullata.

Nella tabella 1 è indicato il campo di funzionamento dei singoli elementi divisore.

Più è alta la portata (q) di alimentazione, maggiore è la precisione di divisione del flusso, ma di contro si hanno perdite di carico e rumorosità più elevata. Pertanto consigliamo di alimentare gli elementi con portate uguali o di poco superiori a quelle indicate nella colonna "CONSIGLIATA".

Ricordarsi di verificare le portate anche in fase di riunificazione del flusso.

Le pressioni indicate sono da considerarsi massime di funzionamento, il divisore può supportare picchi di pressione superiori del 20%.

Come calcolare le misure "Li" e "Lt" del divisore:

Dalla **tabella 2** ricavare le misura "Li" per i divisori fino a 16 elementi con cilindrate uguali; per i divisori con elementi diversi o con più di 16 elementi le misura "Li" e "Lt" si calcolano con le seguenti formule:

Li =
$$[(n-1) \times 23] + 92 + (A1 + A2 + A3 +)$$
 92 = 46 + 46

n = Numero di elementi del divisore

A1... An = altezze elementi divisore

ESEMPIO: Per ottenere le misure Li e Lt di un divisore a tre elementi (n=3), del tipo RV-0V 0,98 + 0,76 +1,27

Interasse fori di fissaggio Li = $[(3-1) \times 23] + 92 + 35,5 + 34 + 38 = 245,5$ mm

Lunghezza di ingombro totale Lt = 245,5 + 14 = 259,5

Nella **tabella 3** sono indicati il numero di ingressi in funzione del numero di elementi Gli ingressi del divisore sono tutti comunicanti ed è possibile utilizzarne anche uno solo tappando gli altri. Consigliamo di sfruttare almeno **1** ingresso ogni **15 I/min** di portata

Per ottenere errori di divisione **inferiori al 3**% non si devono avere differenze di pressioni tra gli elementi superiori a **30 bar.** Per ottenere precisioni elevate è importante anche il rispetto dei seguenti parametri:

- Temperatura ambiente: -10°c ÷ +60°c Temperatura olio: +30°c ÷ +60°c

- Olio idraulico a base minerale hlp, hv (din 51524) Viscosità olio 20 ÷ 40 cSt

Filtraggio olio 10 ÷ 25 μ

Flow Divider with MOTOR

Code:

9RG NN O CC CC

	Flow Divider Typology
NN	Number of flow divider elements
0	Number of motor elements
	Motor Displacement Code
CC	Flow Divider Displacement Code

Example: Flow divider with two elements (same displacement) and Motor

Example: Flow Divider 4 elements (different displacement - max 6) and Motor:

RV-0G / 0,57+0,76+1.27+0.45 + 1 Motor 2.30

9RG 04 1 13 05 06 09 04

NOTE: to define codes for flow dividers with more than 6 different displacement, please contact our sales department.

Table: 1											
Displacem.	СС	Max	One element flow rate l/min								
Cm ³ /rev	Code	Pressure bar	MIN	RECOMMENDED	MAX						
0,17	01	210	0,2	0,4	1,2						
0,25	02	210	0,3	0,7	1,8						
0,45	04	210	0,6	1,2	3						
0.57	05	210	0,8	1,5	3,8						
0,76	06	210	1	2	4,8						
0,98	07	210	1,2	2,3	5,6						
1,27	09	210	1,5	3	7,2						
1,52	11	210	1,9	3,5	8						
2,30	13	210	2,6	5	10,3						

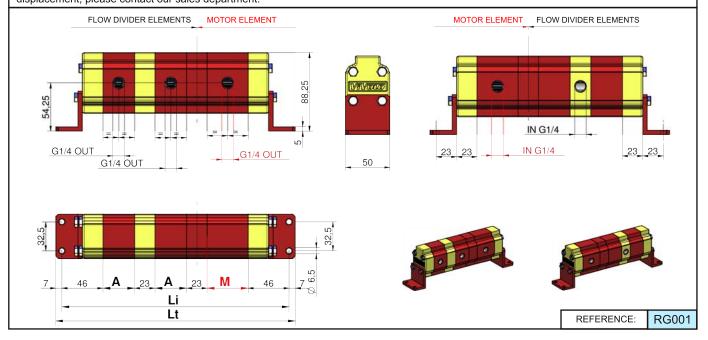
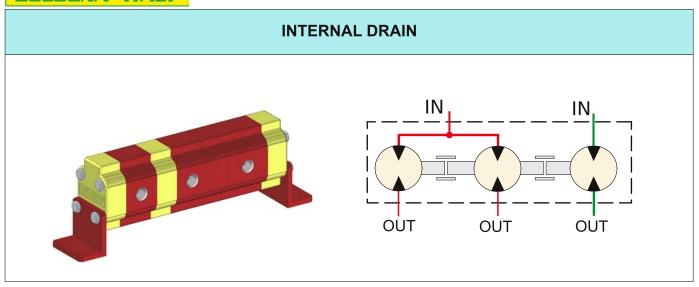


Table: 2

Li = Distance between fixing hole centres (single displacement flow divider)


Cm ³ /rev	A-M
0,17	29,3
0,25	29,9
0,45	31,5
0,76	34
0,98	35,5
1,27	38
1,52	40
2,30	46

	Number of elements													
2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
174,8	227,7	280,6	333,5	386,4	439,3	492,5	545,1	598	650,9	703,8	756,7	809,6	862,5	915,4
178	232,5	287	341,5	396	450,5	505	559,5	614	668,5	723	777,5	832	886,5	941
180	235,5	291	346,5	402	457,5	513	568,5	624	679,5	735	790,5	846	901,5	957
183	240	297	354	411	468	525	582	639	696	753	810	867	924	981
186	244,5	303	361,5	420	478,5	537	595,5	654	712,5	771	829,5	888	946,5	1005
191	252	313	374	435	496	557	618	679	740	801	862	923	984	1045
195	258	321	384	447	510	573	636	699	762	825	888	951	1014	1077
207	276	345	414	483	552	621	690	759	828	897	966	1035	1104	1173

Table: 3 in this table the number of inlets in function of the number of elements are indicated.

Number of elements	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
"IN" Number of inlets	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8

Flow Divider with MOTOR

In table 1 the functining range of single flow divider elements is indicated.

The higher is the feeding capacity (q), the higher is the precision of the flow division, but in opposition there are losses of loading and higher noise. Therefore we suggest to feed the elements with capacities equal or a few superior to the ones indicated in the column **"RECOMMENDED"**.

Remember to verify the capacities even in phase of flow reunion.

The pressure indicated are to be considered as maximum of functioning, the flow divider is able to bear peaks of pressure 20 % superior.

How to calculate the "Li" and "Lt" measures of flow dividers:

From **table 2** it is possible to obtain the "Li" measure for flow dividers up to 16 elements with equal displacements; for flow dividers with different elements or with more than 16 elements the "Li" and "Lt" measure have to be calculated by the following formula:

Li =
$$[(n-1) \times 23] + 92 + (A1 + A2 + A3 +)$$
 92 = 46 + 46

n = Number of elements of flow divider

A1...An = heights of elements of flow divider

EXAMPLE: To obtain the measures Li and Lt of a flow divider with three elements (n=3), RV-0G / 0,98 x 2+ 1 MOTOR 2,30

Distance between fixing hole centres $Li = [(3-1) \times 23] + 92 + 35,5 + 35,5 + 46 = 255 \text{ mm}$

Total Lenght Lt = 245,5 + 14 = 269

In table 3 the number of inlets in fuction of the number of elements are indicated.

For flow dividers with many inlets, as they are all communicating it is even possible to use only one of them, by plugging the other ones. We suggest to make full us at least of 1 inlet every 15 l/min capacity.

To obtain errors of division **inferior to 3%** there must be no difference of pressure between the elements superior to **30 bar**. To obtain high precisions the respect of the following parametres is also important:

- Enviroment temperature: -10°c ÷ +60°c Oil temperature: +30°c ÷ +60°c

- Hydraulic oil based on hlp, hv (din 51524) minerals Oil Viscosity 20 ÷ 40 cSt

- Oil filtering 10 ÷ 25 μ

Flow divider with single phase correction valve common to all the elements and MOTOR

Table: 2

Li = Distance between fixing hole centres (single displacement flow divider)

Cm ³ /rev	A-M
0,17	29,3
0,25	29,9
0,45	31,5
0,76	34
0,98	35,5
1,27	38
1,52	40
2,30	46

	9													,
	Number of elements													
2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
174,8	227,7	280,6	333,5	386,4	439,3	492,5	545,1	598	650,9	703,8	756,7	809,6	862,5	915,4
178	232,5	287	341,5	396	450,5	505	559,5	614	668,5	723	777,5	832	886,5	941
180	235,5	291	346,5	402	457,5	513	568,5	624	679,5	735	790,5	846	901,5	957
183	240	297	354	411	468	525	582	639	696	753	810	867	924	981
186	244,5	303	361,5	420	478,5	537	595,5	654	712,5	771	829,5	888	946,5	1005
191	252	313	374	435	496	557	618	679	740	801	862	923	984	1045
195	258	321	384	447	510	573	636	699	762	825	888	951	1014	1077
207	276	345	414	483	552	621	690	759	828	897	966	1035	1104	1173

Table: 3 in this table the number of inlets in function of the number of elements are indicated.

Number of elements	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
"IN" Number of inlets	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8

VA - TTALY Flow divider with single phase correction valve common to all the elements

EXTERNAL DRAIN STANDARD SETUP	INTERNAL DRAIN
Connect the drain port (T) to the tank	To predispose the divider to the internal drain, execute following operations: 1. remove the M6 dowel inside the drain port 2. with a 1/4 G plug, plug the drain port (T)
OUT OUT OUT OUT	OUT OUT TOUT

In **table 1** the functining range of single flow divider elements is indicated.

The higher is the feeding capacity (q), the higher is the precision of the flow division, but in opposition there are losses of loading and higher noise. Therefore we suggest to feed the elements with capacities equal or a few superior to the ones indicated in the column **"RECOMMENDED"**.

Remember to verify the capacities even in phase of flow reunion.

The pressure indicated are to be considered as maximum of functioning, the flow divider is able to bear peaks of pressure 20 % superior.

How to calculate the "Li" and "Lt" measures of flow dividers:

From **table 2** it is possible to obtain the "Li" measure for flow dividers up to 16 elements with equal displacements; for flow dividers with different elements or with more than 16 elements the "Li" and "Lt" measure have to be calculated by the following formula:

Li =
$$[(n-1) \times 23] + 92 + (A1 + A2 + A3 +)$$
 92 = 46 + 46

n = Number of elements of flow divider

A1... An = heights of elements of flow divider

EXAMPLE: To obtain the measures Li and Lt of a flow divider with three elements (n=3), RV-0H 0,98 x 2 + 1 Motor 2.30

Distance between fixing hole centres $Li = [(3-1) \times 23] + 92 + 35,5 + 35,5 + 46 = 255 \text{ mm}$

In table 3 the number of inlets in fuction of the number of elements are indicated.

For flow dividers with many inlets, as they are all communicating it is even possible to use only one of them, by plugging the other ones. We suggest to make full us at least of 1 inlet every 15 l/min capacity.

To obtain errors of division **inferior to 3%** there must be no difference of pressure between the elements superior to **30 bar**. To obtain high precisions the respect of the following parametres is also important:

- Environment temperature: -10°c ÷ +60°c Oil temperature: +30°c ÷ +60°c

- Hydraulic oil based on hlp, hv (din 51524) minerals Oil Viscosity 20 ÷ 40 cSt

- Oil filtering 10 ÷ 25 μ